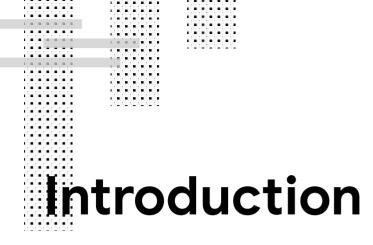


Air Quality Index for Urban Areas

Panchajanya Sarkar [2021MSBDA028]

Central University of Rajasthan August 2023



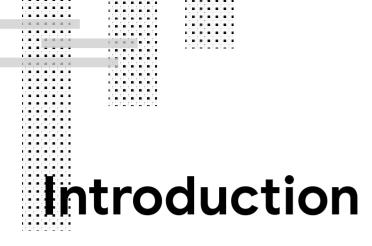
Overview

Air Quality Index for Urban Areas

- Introduction
- Problem Statement
- Objectives
- Methodology
- Exploratory Data Analysis
- Model Development
- Web Dashboard
- Result and Analysis

Air Quality Importance

Air Quality profoundly affects human health and the environment. The air we breathe affects our well-being and monitoring air quality becomes crucial.


. . .

. . . .

a share a share as a

......

.....

Motivation

 \rightarrow Rapid urbanization and industrial growth have led to an urgent need for real-time air quality information.

 \rightarrow Poor air quality poses serious health risks, particularly in densely populated areas. The lack of immediate data hinders informers decision making for residents and policymakers alike.

 \rightarrow This project aims t bridge this gap by providing a user-friendly web dashboard that offers a predicted Air Quality Index value by predicting from the values provided by the user with an accuracy of ~96%.

a share a share as a

Challenges Faced

.

.

.

......

.....

.

.....

.

.

.

.

.......

.

.

.

.

.

.

.

....

.....

.....

.....

1912/1912/1912

Densely Populated Areas Urban regions host high population densities, increasing pollution sources and		
complexity		
Dynamic Environment		
Air Quality changes rapidly due to traffic. Industries and weather conditions,		
demanding real time predictions.		111
Limited Coverage		
Conventional Static monitoring stations offer limited coverage and may not		
capture local capture variations.		
Public Health Impact		
Lack of immediate data affects health decisions, especially for vulnerable		
individuals.		
iliulviduals.		
		- 201

Key Objectives

The key objectives to describe the intended results and impacts of the efforts -

\rightarrow A Real-Time Web dashboard

A user-friendly web dashboard to display the predicted AQI value.

→ Empower Residents

Provide Information to individuals who wants a future plan by AQI values

→ Urban Planning

Equip policymakers with near-accurate data to guide urban development, transportation etc.

 \rightarrow Bridge Information Gap

Address the lack of AQI information and promote data-driven decisions.

......

......

.....

. . . .

. . . .

.

a share a share as a

Data Collection

 \rightarrow Data Source is obtained from a reputable source, Kaggle in this instance.

 \rightarrow The data source is read using pandas and ISO-8859-1 encoding. A screenshot of data reading is shown below:

read the data from the csv file located inside datasets folder Loading... df = pd.read_csv('datasets/data.csv', encoding = "ISO-8859-1", low_memory=False)

 \rightarrow 'df' is a variable which stores the dataframe.

. . . .

a share a share as a

.....

Data Viewing

 \rightarrow The data is first viewed. To view the data we either check the *head* or the *tail*. By deafult, *head* returns the top 5 rows of a data frame.

	df.head															
	stn_code	e sampling	g_date	state	location	agency	type	so2	no2	rspm	spm	location_m	onitoring_station	pm2_5	date	
	150) February - M0	21990	Andhra Pradesh	Hyderabad	ome NaÑh	Residential, Rural and other Areas	4.8	117.4	NaN	NaN		NaN	NaN	1990-02-01	
	15	1 February - M0	21990	Andhra Pradesh	f Hyderabad e	ot: NaN	Industrial Area	3.1	7.0	NaN	NaN		NaN	NaN	1990-02-01	
2	vichat 152	2 February - M0	21990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	6.2	28.5	NaN	NaN		NaN	NaN	1990-02-01	
	150) March - M0	31990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	6.3	14.7	NaN	NaN		NaN	NaN	1990-03-01	
4	hon Deque	1 March - M0	31990	Andhra Pradesh	Hvderabad	NaN	Industrial Area	4.7	7.5	NaN	NaN		NaN	NaN	1990-03-01	

. 1.1.1.1.1.1.1.1

.

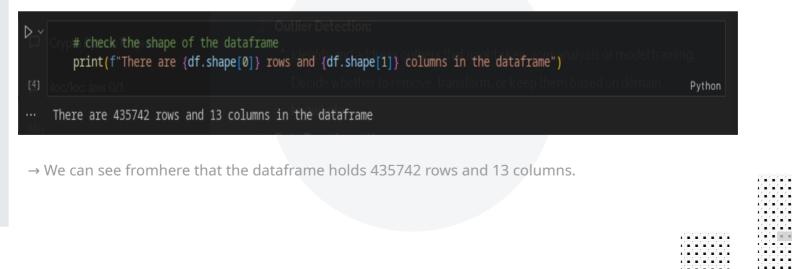
......

.....

a share a share as a

.

.


......

.

Checking Shape of the dataframe

 \rightarrow The shape of the dataframe is figured by *shape* function.

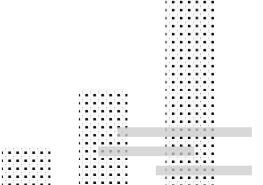
Dealing with NULL/missing values

→ NULL values or missing values appear whenever a data entry is missed or something subsequent mishaps.

<pre># check for null values df.isnull().sum().sort_v</pre>	
pm2_5	426428
spm	237387
agency	149481
stn_code	144077
rspm	40222
so2	34646
location_monitoring_station	27491
no2	16233
type	5393
date	
sampling_date	
location	
state	
dtype: int64	

▷ ~ [5]		<pre># check the basic info of the if.info()</pre>		
	Rang	ss 'pandas.core.frame.DataFra eIndex: 435742 entries, 0 to columns (total 13 columns):		
		Column	Non-Null Count	Dtype
		stn_code	291665 non-null	
		sampling_date	435739 non-null	
		state	435742 non-null	object
		location	435739 non-null	object
		agency	286261 non-null	object
		type	430349 non-null	object
			401096 non-null	float64
			419509 non-null	float64
		rspm	395520 non-null	float64
		spm	198355 non-null	float64
		location_monitoring_station	408251 non-null	object
		pm2_5	9314 non-null	float64
		date		object
	dtyp	es: float64(5), object(8)		
	memo	ry usage: 43.2+ MB		
1				

	1.2.2.2.2.2.1.1.1	
20.70		
	<pre>content et et</pre>	



Dealing with NULL/missing values

 \rightarrow To fill the NULL values, we will fill the NULL values with **Median** values of each column.

→ The purpose of using **Median** instead of **Mean** is dealing with **Outliers.** Since **Median** is less sensitive to extreme values and provides a more robust measure of Central Tendency.

 \rightarrow We should not remove the outliers from the data since we have no physical idea what exactly was the original value when compared to the read value. Also it affects accuracy in some cases.

Dealing with NULL/missing values

 \rightarrow The NULL values are replaced with **median** values.

	t64 column itypes(inc n of each	lude=['float64']).columns.tolist()
#print(mean)		
median = df[float64_cols].	median()	
df[float64_cols] = df[floa	at64_cols]	.fillna(median)
Pyth df.isnull().sum().sort_va l	lues (ascen	ding=False)
nked List Sum Calculation	149481	
tn_code	149481 144077	
stn_code		
stn_code location_monitoring_station type	144077 27491 5393	
stn_code location_monitoring_station type date.pythen Projects.	144077 27491 5393 7	
stn_code location_monitoring_station type date content forgets sampling_date	144077 27491 5393 7 3	
n_code cation_monitoring_station pe ste cyclon Projects mpling_date cation	144077 27491 5393 7 3 3 3	
Sin_code location_monitoring_station type date sampling_date location state	144077 27491 5393 7 3 3 0	
in_code location_monitoring_station ype late ampling_date location state so2	144077 27491 5393 7 3 3 0 0	
stn_code location_monitoring_station type date sampling_date location state so2 no2	144077 27491 5393 7 3 3 0 0 0	
<pre>stn_code location_monitoring_station type date sampling_date location state so2 no2 no2</pre>	144077 27491 5393 7 3 3 0 0 0 0	
stn_code location_monitoring_station type data location state so2 no2 rspm	144077 27491 5393 7 3 3 0 0 0 0 0 0	
agency and a status str_code location_sonitoring_station type date Jocation state so2 rspm pm2_5 dtupe: int64	144077 27491 5393 7 3 3 0 0 0 0	

. •

.......

.......

......

.

Dealing with duplicate rows

→ Duplicate rows has no effect overall and it is a toll to memory usage. Dropping the duplicate rows is essential to make the dataframe smaller and reduce memory usage.
 → Uniqueness of the dataframe remains unchanged after dropping duplicate rows.

<pre>#_check for duplicate rows print(df.duplicated().sum</pre>		
Assist with user's request # drop the duplicate rows df.drop_duplicates(inplace		
<pre># check rows and columns a print(f"There are {df.shap</pre>		ropping the duplicates rows and {df.shape[1]} columns in the datafram
<pre># are the unique values in df.nunique()</pre>		
674 There are 435068 rows and 13	columns	in the dataframe
	745 5485	
stn_code ion Example sampling_date state location agency type	5485 37 304 64 10	
stn_code tion Frammin sampling_date state location agency	5485 37 304 64 10 4197 6864	
stn_code as Formats sampling_date state location agency type so2 ro2 rspm mode Canton	5485 37 304 64 10 4197 6864 6065 6668	
stn_code sampling_date state location agency type so2 no2 rspm	5485 37 304 64 10 4197 6864 6065	

	1202222222222	::=:=:=:=:=:=:=:=
	23 U 20 2 U 20 2 U 20 2	
000000000000	and a standard standa	

Dealing with optional columns

 \rightarrow Optional columns exists in the dataframe but it has no purpose in the prediction part. Dropping the column would save us memory and computing time.

df_dron(c)	e columns plumns=cols_to_drop	n innlace True
Scraper Autop(CC	010mm3-0013_00_010	* Predictive model development
New dflinfo()		
Index: 435068	as.core.frame.DataF 8 entries, 0 to 435 (total 8 columns): Non-Null Count	and spatial distribution maps. Dtype
Index: 435068 Data columns # Column 0 state 1 location 2 type 3 so2 4 no2	3 entries, 0 to 435 (total & columns): Non-Null Count 435068 non-null 435065 non-null 435068 non-null 435068 non-null	741 btppe btppe or object object object distributed wave model having validation, and performance evaluation filoated
Index: 435068 Data columns # Column 0 state 1 location 2 type 3 so2 4 no2 5 rspm	<pre>3 entries, 0 to 435 (total 8 columns): Non-Null Count 435068 non-null 435065 non-null 429711 non-null 435068 non-null</pre>	741 and spatial definition maps Dtypedide 8: Predictive Model Development object object object float64 recase model training, validation, and performance evaluation. Float64 Fl

		27.07.07.07.07.07.0
	C 5 C 5 C 5 C 5 C 5 C 5 C 5 C 5 C 5 C 5	
	5.5.5.5.5.5.	
		2.00.00.00.00.00.0
and were were used and were		

Creating SO2 Individual Index

 \rightarrow The purpose of creating SO2 Index is to assess whether it is exceeding acceptale levels and posing potential health risks.

⊳∽	Videos # calculate the so2 individual index (si)
	<pre>def cal_si(so2): si = 0 if (so2 <= 40):</pre>
	elif (so2 <= 80): si = 50 + (so2 - 40) * 50 / 40
	Developmelif (so2 <= 380): si = 100 + (so2 - 80) * 100 / 300
	elif (so2 <= 800): Citer Local Constant si = 200 + (so2 - 380) * 100 / 420 elif (so2 <= 1600):
	si = 300 + (so2 - 800) * 100 / 800 else: si = 400 + (so2 - 1600) * 100 / 800
	return si
	<pre># apply the function to calculate si df['si'] = df['so2'].apply(cal_si)</pre>

lere's how the SI levels correlate with air quality:

<= 50: Acceptable - Good air quality.		
< SI <= 100: Moderate - Moderate air quality, posing a slight health concern for a		
ry small number of people who are unusually sensitive to air pollution.		
0 < SI <= 200: Unhealthy for Sensitive Groups - People with respiratory or heart		
nditions, children, and older adults are at a greater risk. The general public is not		
ely to be affected.		
0 < SI <= 300: Unhealthy - Everyone may begin to experience health effects;		
amb ara of consitive groups move over string on more particula booth offents		
embers of sensitive groups may experience more serious health effects.		
0 < SI <= 400: Very Unhealthy - Health alert: everyone may experience more		
rious health effects.		
>400: Hazardous - Health warnings of emergency conditions. The entire		
pulation is more likely to be affected.		

Creating NO2 Individual Index

 \rightarrow The purpose of creating NO2 Index is to assess whether it is exceeding acceptale levels and posing potential health risks.

▶ ~ Prois# calculate the no2 inc	dividual index (ni)
<pre>def cal_ni(no2):</pre>	
	Here's how
if (no2 <= 40):	
\square Writing Project ni = no2 * 50 /	40 1 SI <= 50: A
elif (no2 <= 80):	31 <= 30. A
	- 40) * 50 <u>/</u> 40 ₅₁ <=
elif (no2 <= 180):	. venzemali
	2 - 80) * 100 / 100
elif (no2 <= 280):	* 100 < SI <=
	2 - 180) * 100 / 100
elif (no2 <= 400):	conditions.
	2 - 280) * 100 / 120
LJ Scrape Airelse: y Data	* 200 < SI <
	2 - 400) * 100 / 120
June return ni	members
	* 300 < SI <=
df['ni'] = df['no2'].ap	pply(cal_ni) erious he
[27] Pyro 0.2s que	* SI > 400; F

Here's how the NI levels correlate with air quality: NI <= 50: Acceptable - Good air quality. 50 < NI <= 100: Moderate - Moderate air quality, posing a slight health concern for a very small number of people who are unusually sensitive to air pollution. 100 < NI <= 200: Unhealthy for Sensitive Groups - People with respiratory or heart conditions, children, and older adults are at a greater risk. The general public is not likely to be affected. 200 < NI <= 300: Unhealthy - Everyone may begin to experience health effects; members of sensitive groups may experience more serious health effects. 300 < NI <= 400: Very Unhealthy - Health alert: everyone may experience more serious health effects. NI > 400: Hazardous - Health warnings of emergency conditions. The entire population is more likely to be affected.

	i e je je je je je	
5		

Creating RSPM Individual Index

 \rightarrow The purpose of creating RSPM Index is to assess whether it is exceeding acceptale levels and posing potential health risks.

<pre>def cal_rpi(rspm): rpi = 0 if (rspm <= 30): rpi = rspm * 50 / 30 elif (rspm <= 60): rpi = 50 + (rspm - 30) * 50 / 30 elif (rspm <= 90): rpi = 100 + (rspm - 60) * 100 / 30 elif (rspm <= 120):</pre>
if (rspm <= 30): rpi = rspm * 50 / 30 elif (rspm <= 60): rpi = 50 + (rspm - 30) * 50 / 30 elif (rspm <= 90): rpi = 100 + (rspm - 60) * 100 / 30
<pre>rpi = rspm * 50 / 30 elif (rspm <= 60): rpi = 50 + (rspm - 30) * 50 / 30 elif (rspm <= 90): rpi = 100 + (rspm - 60) * 100 / 30</pre>
Tpi = 50 + (rspm - 30) * 50 / 30 elif (rspm <= 90):
elif (rspm <= 90): Assist with use rpi = 100 + (rspm - 60) * 100 //30 = 20
□ Assist with use rpi = 100 + (rspm - 60) * 100 / 30 = 20
rpi = 200 + (rspm - 90) * 100 / 30
elif (rspm <= 250): likely to be aff
🔲 Scrape An Oual rpi = 300 + (rspm - 120) * 100 / 130
else:
rpi = 400 + (rspm - 250) * 100 / 130 S
return rpi · 300 < NI <= 44
New chat # apply the function to calculate rpious health
df['rpi'] = df['rspm'].apply(cal_rpi) 400; Haz [28] Python and a second

Here's how the RPI levels correlate with air quality: RPI <= 50: Acceptable - Good air quality. 50 < RPI <= 100: Moderate - Moderate air quality, posing a slight health concern for a very small number of people who are unusually sensitive to air pollution. 100 < RPI <= 200: Poor - People with respiratory or heart conditions, children, and older adults are at a greater risk. The general public is not likely to be affected. 200 < RPI <= 300: Very Poor - Everyone may begin to experience health effects; members of sensitive groups may experience more serious health effects 300 < RPI <= 400: Severe - Health alert: everyone may experience more serious . health effects. 1.1.1.1.1.1.1.1.1 RPI > 400: Very Severe - Health warnings of emergency conditions. The entire population is more likely to be affected.

.

......

.

......

.....


......

......

Creating SPM Individual Index

 \rightarrow The purpose of creating SPM Index is to assess whether it is exceeding acceptale levels and posing potential health risks.

Here's how the SPI levels correlate with air quality: . SPI <= 50: Acceptable - Good air quality. 50 < SPI <= 100: Acceptable - Satisfactory air quality. 100 < SPI <= 200: Moderate - Moderate air quality, posing a slight health concern for a very small number of people who are unusually sensitive to air pollution. 200 < SPI <= 300: Poor - Poor air quality, unhealthy for sensitive groups. 300 < SPI <= 400: Very Poor - Very poor air quality, everyone may begin to . experience health effects. 1.1.1.1.1.1.1.1.1 SPI > 400: Severe - Health warnings of emergency conditions, the entire population is more likely to be affected.

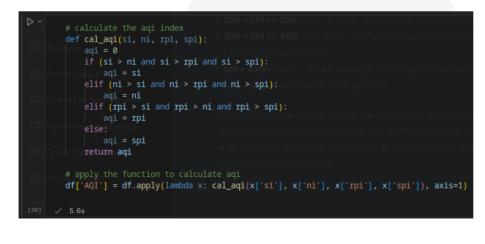
.

......

a share a share as a

.......

.....


.......

......

Creating Air Quality Individual Index

 \rightarrow The purpose of creating AQII is to mathematically calculate the values from other attributes and use it to train and test models.

													ee.	
										- M.				
								i i						
								i i		9				÷
									1	1				
										0				
										1	1		1	
									1	12	1		Ξ.	1
									2	÷	0			÷.
										1.0	8			
											8	2	2	
								1	8	÷	0	2	2	2
												•		
									•		•	•	٠	
										•		•	٠	
		20	1	1	1	20				-		•	٠	÷
	- 1	. •	2							•		•		
	- 5				. •	•								
	- 5	2						i i		1	Ξ.			÷
								- i		1	Ξ.			
	- 1					•								
	i i													
	÷,		۰.	۰.	۰.	۰.	a		8	8		2		
2222	- 1	1 C C	1								-	2		
1212	- 2	12	2									۰.		
2525		12	9	2	2	12			•		•	•	•	
9 .	- 3		8	8	8	8	8	- L.					-	
6.80 B		2		2		0						٠		•
) II.					-		

Exploratory Data Analysis

Data Visualization

.

.

.

......

......

.

.....

.

.

.

.

.

.

.

.

.

.

1 8 8 M 8

.

.

.

.

.

.

.

_ _ _ _ _ _

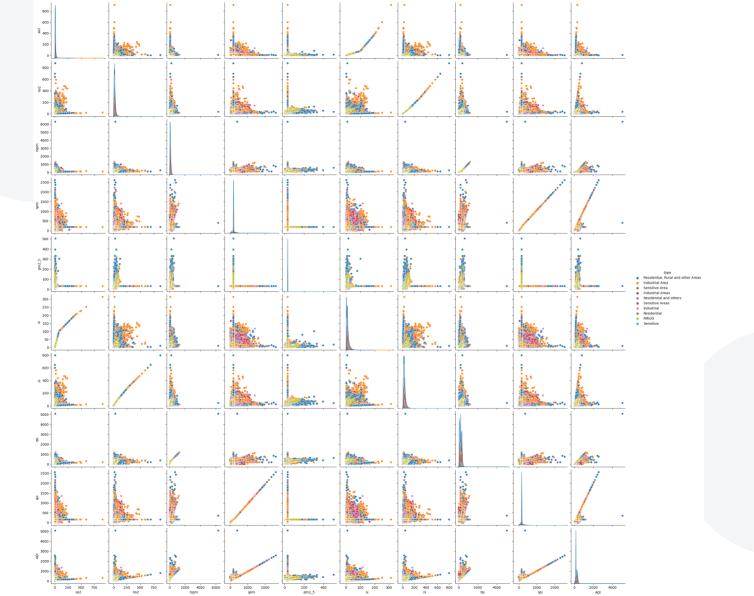
.

.....

.

.

.....


.

Pairplot against type column

 \rightarrow pairpot provides an insight into both relationship between variables and how those relationships differ across different categories.

 \rightarrow The image is shown on the next slide.

10 A 14 A 10 10 1 A 1 A 1 A a share a share as a

.

.

.

.

.

.

.

.

.

.

1121223232343

1.10.10

. . .

. . .

.

.......

.

.

.

......

.

1.0.0.0

. . . .

and so the

. . .

. . .

. . .

. . .

Frequency of Reading from each state

_ _ _ _ _ _

.

.

.

.....

.

 \rightarrow This visualizes the number of readings collected from each state.

		1.2.2.2.2.2.2
	124242424242424	
	C. 8	
		1.2.2.2.2.2.2
57575		
62623		
	C. 8	
		1. E. E. E. E. E. E. E.

.

......

.

.

.

.

......

.

.

.

.

.

.

.

.

.

.

.

1.0.0

.

.

.

.

......

.

.

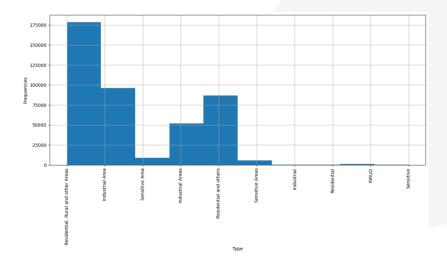
......

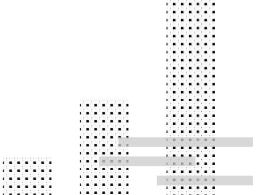
Count of types present in the dataset

_ _ _ _ _ _

.

.....


.


.....

.....

.

 \rightarrow This visualizes the count of types in the dataset..

.....

.

.

.

.

.

.

.

.

.

.

.

. . . .

.

.

.

.

.

......

.

. . .

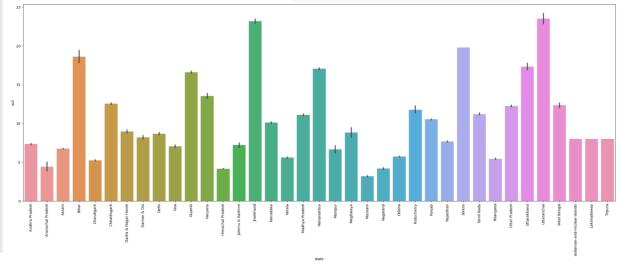
. . .

1.0.0.0

Higher Sulphur-di-oxide levels in the air

_ _ _ _ _ _

.


.

.

.

.

 \rightarrow This visualizes the SO2 levels in the air for each state.

.

.

.

.

a frank a frank a frank a frank

.

.

.

.

.

1 10 10

1.0.0

. . .

.

.

.

.

.

.

.

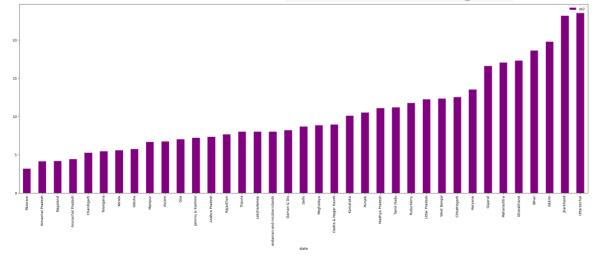
. . .

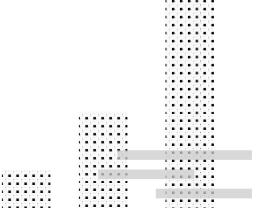
. . .

Higher Sulphur-di-oxide levels in the air

_ _ _ _ _ _

.


.


.

.

.

 \rightarrow This visualizes the SO2 levels in the air for each state (ascending).

.

.

.

.

.

.

.

.

.

.

. . . .

.

.

.

.

.

......

.

. . .

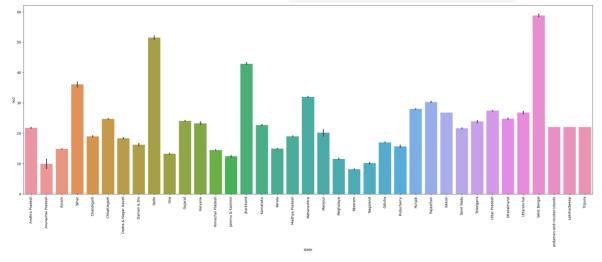
. . .

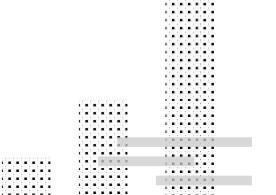
1.0.0.0

Higher Nitrogen-di-oxide levels in the air

_ _ _ _ _ _

.


.


.

.

.

.

.

.

.

.

......

.

.

.

.

.

.

.

.

.

.

.

.

......

.

in the last

. . .

. . .

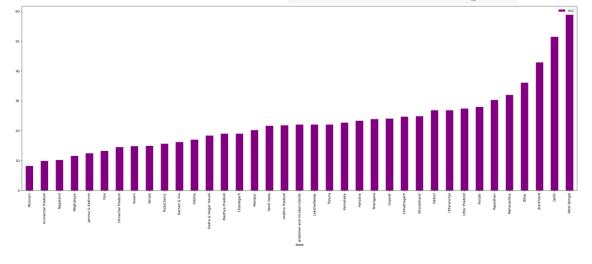
. . .

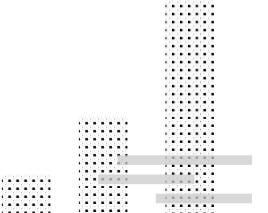
Higher Nitrogen-di-oxide levels in the air

.

.

.


and and and and and


.

.

.

 \rightarrow This visualizes the NO2 levels in the air for each state (ascending).

.

.

.

.

.

.

.

.

.

.

.

. . . .

.

.

.

.

.

......

.

. . .

. . .

. . .

1 in the last

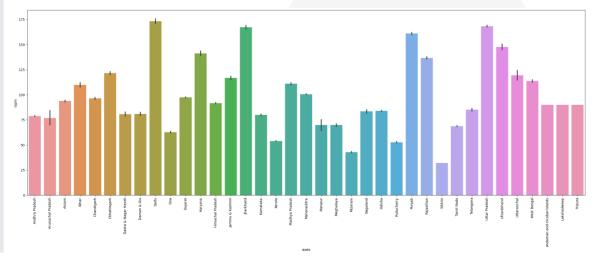
1.00

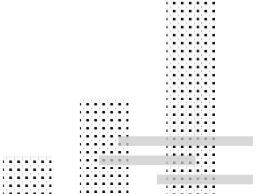
. . . .

Higher Respirable SPM levels in the air

.

.


.


.

.

.

 \rightarrow This visualizes the RSPM levels in the air for each state.

.

.

.

.

.

.

.

.

.

.

.

. . .

.

. . .

.

.

.

.

......

.

.

and so the

. . .

. . .

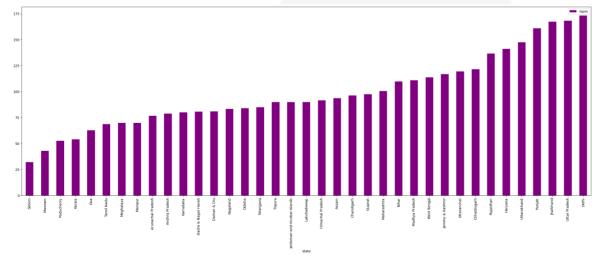
. . .

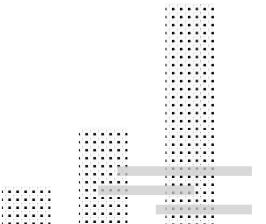
Higher Respirable SPM levels in the air

.

.

.


.


.

.

.

 \rightarrow This visualizes the RSPM levels in the air for each state (ascending).

.

.

.

.

.

.

.

.

.

. . .

. . . .

. . .

.

.......

.

.

.

......

.

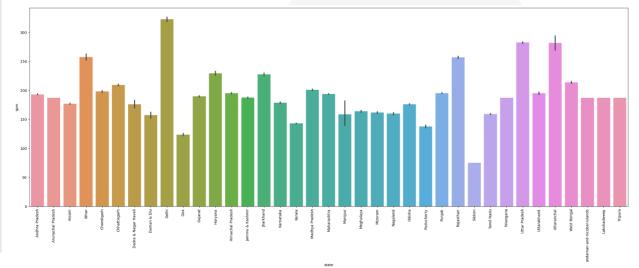
. . .

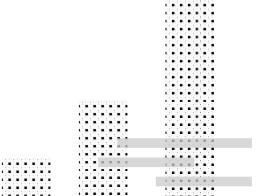
. . .

 _ _ _ _ _ _

.

.


.


.

.

Higher SPM levels in the air

 \rightarrow This visualizes the SPM levels in the air for each state.

.

.

.

.

......

.

.

.

.

.

.

.

.

.

.

.

.

......

.

in the state

. . .

. . .

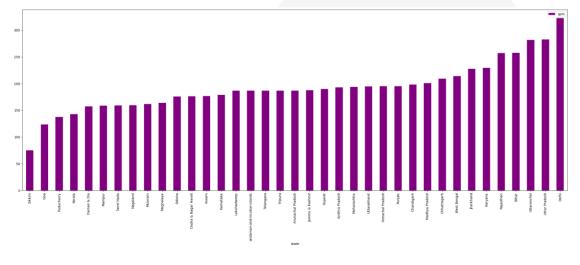
.

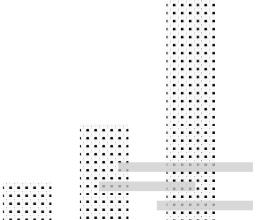
.

.

.

.


.


.

.

Higher SPM levels in the air

 \rightarrow This visualizes the SPM levels in the air for each state (ascending).

.

.

.

......

......

.

.

.

.

.

.

.

.

.

.

.

1.0.0

.

.

.

.

.......

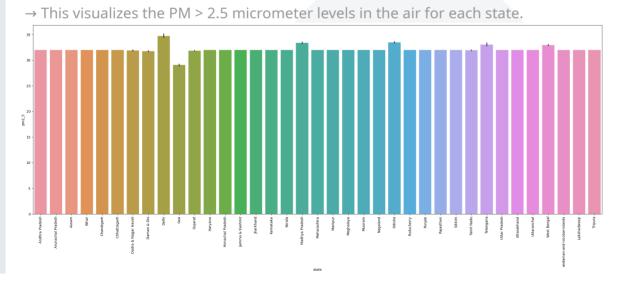
.

.

.

.

.....


.

.

.

.

Higher PM2.5 levels in the air

. A 10 10 a she had a she had a

. .

.

.

.

......

......

.

.....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

......

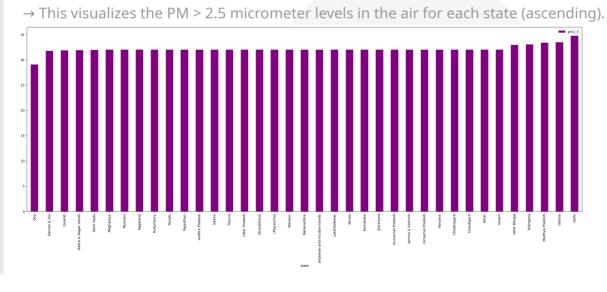
.

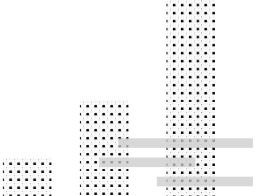
......

.

.

.


.


......

.

.

Higher PM2.5 levels in the air

Exploratory Data Analysis

Data Visualization

.

.

.

......

......

......

.

.

.

.

.

.

.

.

.

.

a a a sin sin sin

.

.

.

.

......

.

.

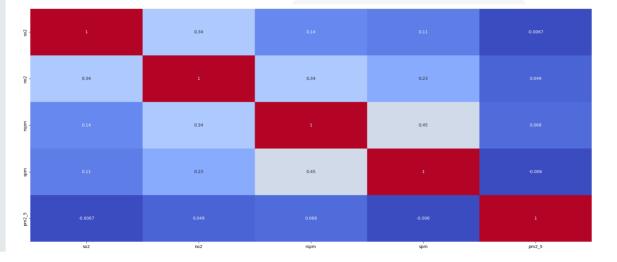
.....

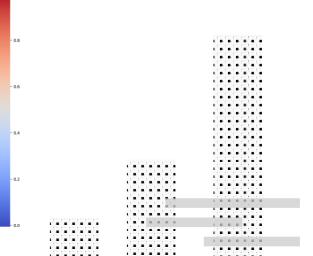
_ _ _ _ _ _

.....

.

.


.


.....

.

Correlation Heatmap

 \rightarrow Heatmap to visualize the correlation between the features of the dataset.

Location Selection

.

.

.

.

.

Prediction for Kolkata, West Bengal

.....

and and and and and

and and and and and and

.

.

.

- \rightarrow Select an Urban area from the states. Here we will be using Kokata, West Bengal.
- \rightarrow The following snippet shows the states and the cities from a selected state.

.

.

.

Location Selection

.

.

.

......

.

.

.

.

.

.

.

.

.

.

.

.

.

.

......

.

.

.

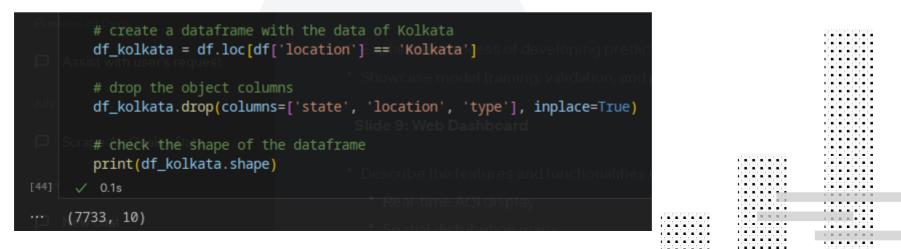
1.0.0.1

Prediction for Kolkata, West Bengal

_ _ _ _ _ _

.

.


.

.....

.

 \rightarrow Select an Urban area from the states. Here we will be using Kokata, West Bengal.

 \rightarrow The following snippet shows the selection of Kolkata

Train and Test data split

_ _ _ _ _ _

.....

and and and and and and

and and and and and

.

.

the state of a state of a

.

.

a she had a she had a

.

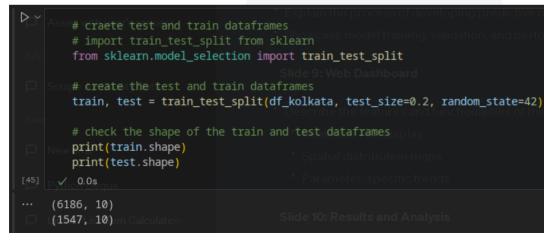
.

. . .

.

.

.


.

. . .

. . .

Splitting data using scikit-learn

 \rightarrow Split the data into train and test with 80% data into train and remaining 20% into test set.

257525252525	
1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5	
- Andrean Andrea Andrean	
	0.00000000000

LazyPredict – A modern Library to run ML models

Creating and fitting models into LazyRegressor

.

.

.

......

.....

.

......

.

.

.

.

.

.

.

.

.

.

A submitted with the submitted state

in a state of

.

.

.

......

.

.

_ _ _ _ _ _

.

.

.

......

......

.

 \rightarrow Use LazyPredict to find the best model for this dataset

LazyPredict – A modern Library to run ML models

Creating and fitting models into LazyRegressor

.

.

.

.

.

.

 \rightarrow Use LazyPredict to find the best model for this dataset

	Adjusted R-Squared R-	Squared	RMSE \	_
Model	and a second required at or	- nata Ana		
ExtraTreeRegressor	1.00	1.00	2.48	
XGBRegressor	* Displays 1:00 key	vist 1.00 ti	or as áa om y	
GradientBoostingRegressor	1.00	1.00	5.51	
ExtraTreesRegressor	1.00	1.00	5.67	
RandomForestRegressor	1.00	1.00	7.94	
LGBMRegressor	Slide 8: Pr <u>r</u> c øo tive	Mode@@e	/c8:20nen	
DecisionTreeRegressor	1.00	1.00	8.66	
HistGradientBoostingRegressor	1.00	1.00	8.66	
BaggingRegressoruest	0.99	0.99	8.87	
MLPRegressor	* Showcasion99 delt	rain ø.99 /a		
KNeighborsRegressor	0.99	0.99	9.49	
Ridge	Stide 0. W0.96	0.96	24.33	
SGDRegressor	0.96	0.96	24.33	
BayesianRidge	0.96	0.96	24.34	
RidgeCV	* Describe ø:96 eatu	res0.96 [°] u	24.34 liti	
TransformedTargetRegressor	0.96	0.96	24.34	
LinearRegression	0.96	0.96	24.34	
Lars	* Spatia 0.96 ribu	tion 0.96 s	24.34	
LarsCV	0.96	0.96	24.34	
LassoLarsCV	0.96	0.96	24.34	
LassoLarsIC	0.96	0.96	24.34	
LassoCV: Sum Calculation	Slide 10: R ø:96 ts ar	nd 40.96 si	24.35	
Lasso	0.96	0.96	24.71	
LassoLars	0.96	0.96	24.71	
OrthogonalMatchingPursuitCV	0.96	0.96	24.90	
RANSACRegressor	* Real-t io<u>.</u>96 \QIp	orec@.96	24.94	
ElasticNetCV	0.96	0.96	25.75	
HuberRegressor	0.96	0.96	26.01	
PoissonRegressor	* Insighø.95rived	0.95	27.54 SIS	
LinearSVR	0.95	0.95	27.64	
PassiveAggressiveRegressor	Stide 11 0 0.93 alor	0.93	32.48	
OrthogonalMatchingPursuit	0.93	0.93	33.17	
ElasticNet	0.93	0.93		
SVR	* Summari 0-92 e pro	je (ø. 92 h		
NuSVR	0.92		34.93	
AdaBoostRegressor	0.91	0.91		
TweedieRegressor	managen o:88	0.88		
GammaRegressor	0.81	0.81		
DummyRegressor	Send a messac-0.01	-0.00 1		
GaussianProcessRegressor	-0.19	-0.18 1		
KernelRidge	-2.87	-2.85 2	42.73	

. **Predictive Model Development**

Use Linear Regression to predict AQI

Creating and fitting models into Linear Regresior

.

.

.

......

.

.

.

.

.

.

.

.

.

.

.

.

A submitted and

.

.

.

.

.

.

.

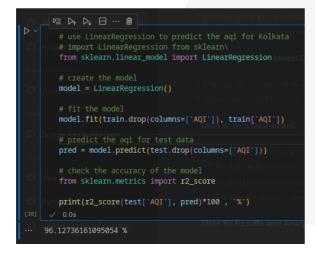
.....

.

_ _ _ _ _ _

.

.....


and and and and and

.....

.

.

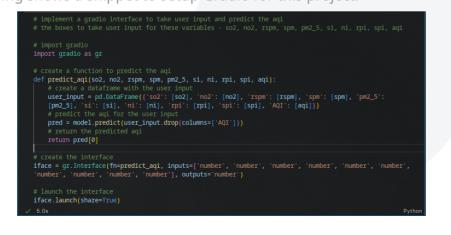
 \rightarrow Linear Regression can predict AQI with 96% accuracy

.

. . . .

.

.


.

Gradio – A Library to setup web dashboard for ML

Setting up Gradio Interface for users to interact on web

 \rightarrow Gradio helps to create a basic interface for users to react with. It provides a dedicated URL to share for users while the instance is still active and running. \rightarrow Fllowing shows a snippet to setup Gradio for this project.

		7.0.0.0.0.0.0.0.0.0
		<u> </u>
	e e e e e e e e	
	a a a a a a a a	
·····		
1.0.0.0.0.0.0		

Gradio – A Library to setup web dashboard for ML

Web Interface to react with the model

 \rightarrow User needs to give the input from the sensor data they have collected

 \rightarrow The model will return the predicted AQI value.

 \rightarrow On the snippet on the right, we have taken data from an Industrial Area and we Are getting a higher AQI which shows the area is poluted and it is totlally unhealthy.

205	
spi	
566	
rpi	
124.80	
ni	
27.750	
si	
32.0	
pm2_5	
255.0	
spm	
476.0	
rspm	
104.8	
no2	
22.2	592.7380420
so2	output

•		 	 	
100				

Flag

Results and Analysis

Results and Analysis of the Project

.

.

.....

......

......

.

......

.

.

.

.

.

.

.

.

.

.

1 8 8 M 8

.

.

1

.

.

.

.

.....

_ _ _ _ _ _

.

.....

and and and and and and

.....

.

.

→ **Real Time AQI Predicions:** With sensor data and calculated data, one can easily predict the AQI for the data provided.

→ **Health Implications:** Linked high AQI values to potential health risks, highlighting the importance of timely air quality information.

 \rightarrow **Testing Model Validation:** Rigorous model testing gives us a better validation on the model we are working on.

.

a she had a she had a

.

thank you.

Photo by Dave Hoefler on Unsplash